PŘEDMLUVA.

I.

Stručná tato příručka analytické chemie kvalitativní je určena posluchačům české university jakožto doplněk a doprovod k předmětům z oboru toho, spojeným s praktickými demonstracemi v posluchárně i v laboratoriu, jaké byly na naší universitě zavedeny již roku 1883 na rozdíl od universit sousedních, na nichž se praktikantům dály do rukou tabulky (ku př. Willovy) a ti podle nich prováděli »pohody«, analyzuje, bez hlubšího porozumění, směsi, které se v praxi ani nevyvíjaly.

Jelikož pro elementární analytickou chemii kvalitativní vyhražen jest na naší universitě pouze letní semestr, v němž důležitá nauka ta musí být probrána za několik málo neděl (a jen konec následujícího pak zimního semestru slouží k zapakování), omezili jsme se na to nejnutnější, s čím se mladý chemik za tak krátkou dobu (písnou svátku) seznámí musí. Proto jsme u každého iontu uvedli pouze jeho nejdelší reakce. Nepřejeme si, aby praktikanti v laboratoriu prováděli to, co Angličané jmenují »mere test-tubing«, t.j. bezmyšlenkovitou čistě mechanickou práci ve zkoumavkách, nepovažujeme další za nutné, aby dělali od sebe všechny možné komplikované směsi (ku př. několika látek nerozpustných v lučavce královské), nýbrž hlavním praktickým učilem našeho spisku je, aby se vzbudil u adeptů chemie interes ke hmotě a jejím obecným a aby se naučili poznávat — dle všech vlastností i reakcí — látky nebo těla, vyskytující se v praktickém životě chemika nebo farmaceuta (žáv nastávající mineralogická obor vede základ ku pozdějšímu zkoumání minerálů).
Děkujiem vážené České Společnosti Lékárnické za to, že přes všechny obtíže, s nimiž, jak známo, síření je dnes spojeno, bylo jejím nákladem možno vydat tento spis. Tiskové chyby, jež po nejpočlennějších korrekturách zůstaly, jakož i nedopatření, budež hlasově omluveny okolnostmi, za kterých konečně k vydání spisu došlo i budež dle přiloženého seznamu předem opraveny.

Prof. Dr. Bohuslav Brauner. Dr. Jindřich Řepelka.

II.

Jakožto spoluautor této knihy považuji jak za svou povinnost, tak i za své právo, abych pojednal o otázce chemického názvosloví.

Jelikož v české literatuře chemické začínají teprvé vycházet spisy, založené na opravené nomenklaturě, kdežto celá dosavadní literatura je založena na nomenklatuře staré a v ní byla také vychována skoro celá generace chemická, nomenklatura ta ale se nedá ani z literatury, ani z laboratoria v této přechodně době najednou odstranit, nemohl jsem se odhodlat, by v tomto spisu bylo užito výhradně názvosloví opraveného, při čemž ale také nebylo ignorováno. Jest uvedeno u všech iontů, u četných sloučení i u hlavních reagencí. Vedle toho užíval jsem také názvosloví mezinárodního, jež je běžně zejména pošichačím farmácům i jež je svůj nutným zejména u fósflátní.

Důvody mého jednání byly čistě vědecké.

Od roku 1876 zabýval jsem se studiem českého názvosloví, založeného Šafaříkem na dualistickém a ekvivalentovém názoru Školy Gimeliny, (která některé principy od Berzelia převzala, jiné ale, zejména skoro korotké názrání atomistické, důkladně podškodila) i jeho poměrem ke našim moderním názorům unitárně atomistickým. Když jsem se, jako sotva kdo u nás před tím, ponořil do studií otázek vášených v souvislosti s periodickou soustavou Mendelejevovou, jakožto jedině možného a správného způsobu jich řešení a když jsem již roku 1877 — první a jediný chemik český — upozornil (v »Listech Chemických«) na to, že je nutno činiti u téhož prvků podstatný rozdíl mezi valenci elektropozitivní a valenci elektrominžetivní, a později pokázal na to, že valence
positivní, jest v tak vynikající míře periodickou funkcí atomových vah, že maximální počet pozitivních valencí prvku jest udán číslem grupy, v říž se nalézají (prvky Cu, Ag, Au náležejí do I. grupy) jen jako pozitivně jednomocné, kdežto jako pozitivně trojmočné náležejí do VIII. grupy, v čemž právě zůstávají jejich funkce kolligativní), vykládal jsem pokročilým svým žákům opětovně, jak by se dalo založití české názvosloví chemické na teorii valencí — a v četných případech šlo to velmi jednoduše.

Sbíral jsem ale, že k této reformě není doba ještě vhodná, neboť jsem se setkal s velkými obtížemi, když jsem chtěl, aby bylo názvosloví založeno na zeča moderních názorech o valenci jakožto elektrické vlastnosti atomů, ale teprve před nedávnem se mi to úplně podarilo i u komplikovanějších sloučení anorganických, jejichž konstituce se zdála být v odpovědi s možností, by se i u nich užilo přesného principu elektrovalenočního.

Vycházím od základu čistě vědeckého, na rozdíl od návrhu komise, která vychází od oxfudu i procesů i takových, které neexistují, tedy od základu ještě méně nežli empirického.

U prvku nebo složitých radikálů (jako NH₃), na jejichž sloučeniny se má nová nomenklatura aplikovat, až dožito činíti přesný rozdíl mezi jejich valencemi (nebo valencemi) elektropozitivní a mezi valencí elektronegativní, jak to již činili roku 1864 Butlerov a Erlenmeyer a zejména konsekventně r. 1869 Blomstrand, a jak to tak vysvětlí ze složení jednak kyslíkatých a jednak vodíkatých hranických sloučenin, uvedených Mendělejevem v záhlaví soustavy periodické. U prvních značí Mendělejevo — po R prvek elektronegativní, u druhých značí opět R prvek elektronegativní.

Následující výklad slouží i ku poučení mých žáků.

aby se tato dvě R spolu nezaměňovala, budu k těmto svým účelům užívat příslušný R jedině a vyhradně k označení prvku nebo radikálu elektro-
Algebraická suma jedné negativní a dvou pozitivních valencí rovná se však jedné pozitivní valenci (+2, +1 = +1) a proto musí kyselina tato sloučenina fosforovou. Za důkaz, že v ní je fosfor z části negativní, jako ve fosforovodíku, lze považovat, že se plyn fen tvoří při jejím rozkladu za horka.

Koncovka -ny značí tedy pozitivní jednomocnost i jakožto maximální, limoniční + valenci prvků I. grupy periodické soustavy (zdánlivě výjimky viz na-lo-he), ale i »podhramiční« + monovalencí prvků jiných grup.

Koncovka -ny značí tedy pozitivní dvojomočnost i jako maximální, limoniční + valenci prvků II. grupy, ale i »podhramiční« + dvojomočnost prvků jiných grup.

Kyselina fosforová — fosforitá vystupuje ve dvou tautomerických formách, jež písemně dle principu u 1) uvedeného a) \(P(OH)_3\) a b) \(H\rightarrow PO(OH)_2\), i zdálo by se, že jen v první formě je fosfor trojmočný, ve druhé ale pětimocný. Ve skutečnosti sestává toto arithmetické pětimocnitví ze smíšených valencí, jedné negativní a čtyři pozitivní, takže algebraická suma všech valencí se rovná třem pozitivním valencím (+ 4 = 1 = 3) a poté věděj jen na těch má závislost názvosloví, zve, když toto kyselina obsahuje jeden pozitivní vodík, vázaný jako fosforovodík, neza- jímavé pramen úložných. Důkaz, že také toto kyselina obsahuje jeden pozitivní vodík, vázaný jako fosforovodík, lze spatřovat i v tom, že při jejím rozkladu za horka fosforovodík uniká.

Také tato koncovka -ičítý vyjádřuje pozitivní trojmočnitví jakožto maximální — hranicí, — pozitívni valenci prvku III grupy, ale i »podhraniční« + valenci prvku jiných vyšších grup.

4. Sloučeniny prvku pozitivně čtyrmočných RX₄.

U dvou tautomerů kyseliny sítichité je — zdánlivě nezastíněné rozdělení otázky stejné, jako u dvou tautmerů kyseliny fosforité. Forma a) \(SO\!\cdot\!(OH)\!\cdot\!₂\) obsahuje pouze síru pozitivně čtyrmočnou, ve formě b) \(H\!\rightarrow\!SO\!\cdot\!(OH)\!\cdot\!₂\) má síru dohromady šest různých valencí, ale z těch je jen pět pozitivních a jedna negativní, takže jejich algebraická suma se rovná čtyrem valencím pozitivním (+ 5 — 1 = 4).

5. Sloučeniny prvku pozitivně pětimocných RX₅.

Koncovky -ičný nebo -ičný, které se u nich dosud výhradně užívalo (ekvivalent prvku — »lichomocného« — rovnal se našich atomových vázám), užívá se i nadále: Cl₂ — fosforečný, \(PO\!\cdot\!(OH)\!\cdot\!₂\) — ortho- močná fosforečná, \(NO\!\cdot\!(OH)\!\cdot\!₂\) — dusičná, \(K₂\!\cdot\!Sb\!\cdot\!Cl₃\) — pyroantimoničná atd.

Také tato koncovka vyjádřuje pozitivní pětimocnitví jakožto maximální — »hraniční« — pozitívni valenci prvku V grupy a v některých jen případech i »podhraniční« + valenci prvku vyšších grup.

U sloučení takových prvků (ekvivalent prvku — »sudomocného« — se rovnal poloviči našich atomových vázám) užívalo se dosud výhradně koncovky -ový: \(SF₆\), \(SO\!\cdot\!₂\!\cdot\!Cl₂\!\cdot\!₂\), \(Cr₂\!\cdot\!Cl₆\) — chromný, ale těžko koncovky užívalo staré názvosloví i sloučení (ekvivalent prvku — »lichomocného« — rovnal se atomové válce), že se ve formule ekvivalentních pásy: \(BO\!\cdot\!₃\!\cdot\!Cl₂\!\cdot\!₂\!\cdot\!₂\) — nové názvosloví užívá očesně koncovky -ový, a spolu s těmito sloučení prvku + šestimocných a něco by na to se nezměnilo, kdyby se třeba připsalo, že se kyselina stává v okamžiku ionizace přemění v tautomerii formu \(H₂\!\cdot\!SO\!\cdot\!₂\) v některé směs všech valencí t. j. + 8 a — 2 valence, neboť jejich algebraická suma zůstává rovna + 6 valencím.

Také tato koncovka -ový vyjádřuje pozitivní šestimocnitví jakožto maximální pozitivní valenci prvku VI grupy, ale i »podhraniční« valenci některých prvku ze VII a VIII grupy (u Fe, Rh a Ir dosavadní maximálně).

7. Sloučeniny prvku pozitivně sedimocných RX₇.

Prvním těm (jejich ekvivalent, byly-li »lichomocné« jako chlor, rovnal se naši atomové váze a byly-li »sudomocné«, jako Mn, rovnal se její poloviči, takže se psala kyselina chloristá: \(ClO₃\), ale kyselina mangani-
stá, s ni isomorfní: Mn$_2$O$_7$) zůstala i v opraveném názvosloví koncovka -istý: Cl$_2$O$_7$ — chloristý, MnO$_8$OK — manganistan.

Koncovka ta vyjadřuje pozitivní sedmičetnost jakožto maximální pozitivní valenci prvků VII grupy i »pohranicí« valenci rubidie z VII grupy.

8. Sloučeniny prvku posítivně ošmícných RX$_4$

Koncovky -četý užívá opravené názvosloví k označení maximální pozitivní oktoválení prvků ošmícné grupy v jejich dvou hranicích oxydech Ru$_4$O$_{17}$ — ruthenicely a OsO$_4$ — ošmícnělý.

U sloučenin HP(OH)$_2$ a HPO(OH)$_3$ i HSO$_3$(OH), které se dosud zdály být překážkou konsekventního zařazení nového názvosloví na moderních názorech elektrovalenčích, platí pravidlo, jehož vyslovil r. 1885 Piccin (Sul limite delle combinazioni e sul sistema periodico degli elementi, Torino 1885, duchapelvný to spis, u nás souvra známý), že stejným formátom sloučenin odpovídají stejné reakce. Myslem, že na základě tohoto principu můžeme se stanoviska analytického zcela dobře říci, že ve sloučeninách Hg$^+$ — rtuťných a Cu$^+$ — měděných jsou oba kovové prvky pozitivně jednomocné, poněvadž jejich reakce jsou úplně analogické jednomocným sloučeninám Ag$^+$ — stříbrným a podstatně se liší od reakcí dvojocných iontů rtuťnatých a měděnatých, a když jejich dvojatomy jsou dvojocné. Princip tento dá se aplikovat dale v některém případě, to jest, že reakce kyseliny fosforecké odpovídají sloučenině fosforu pozitivně jednomocného a nikoli trojocného, že reakce obou tautomerů forem kyseliny fosforité odpovídají sloučenině fosforu pozitivně trojocného (nikoli pětiočného), stejně jako reakce obou forem kyseliny sříčité (neb její sotí) odpovídají pouze reakcem pozitivně čtyřocné sířy.

Tím přicházíme k zajímavému problému theoretickému, který úzce souvisí s názory výše pronesenými.

Typická škola valencí, která nečinila rozdíl mezi valencemi pozitivními i negativními a která všechny sloučeniny odvozovala od čtyř typů, jako HCl, H$_2$O, H$_2$N a H$_4$C, tvrdí, že valence je fundamentální vlastností atomů a že proto musí být konstantní, považovala salmiak za sloučeninu »molekularní«, nemohouc se odhalit, aby prohlasila, že je v ní dusík pětiočný. Také škola Frankland-Kolbe-ova i moderní její přívěřenci, vystihli jen malou část pravdy, mají na to, že amoniak, sloučená s chlorovodíkem, přijímá další dva náboje a přechází v salmiak, v němž je dusík pětiočný, jako v kyselině dusičné. Dle mého názoru jsou valence dusíku v salmiaku podstatně různé od valencí v kyselině dusičné. Amoniak, přechází v salmiak, adduje ke svým původním třem negativním valencím ještě jednu — a jednu + valenci. Na + valenci se připojí atom + H a na + valenci atom — Cl, takže i v salmiaku nepřestává byt dusík negativně trojocným (+ 4 — 1 = 3).

Zcela opačný a přece analogický případ je u fluoroboritanu draselného KBF$_4$. Pozitivně trojocný bor ve BF$_3$ aduje ke svým třem pozitivním valencím ještě jednu + 1 a jednu + valenci. Na + + valenci se připojí atom — F a na — valenci atom + K a přece v KBF$_4$ nepřestává být bor (algebraický — sumárně) pozitivně trojocným (+ 4 — 1 = 3). Také v roztocích, obsahujících ionty K$^+$ + Al(OH)$_4$$^-$ i K$^+$ + B(OH)$_4$$^-$ (Heyrovský) zůstávají i bor i hlínk pozitivně trojocnými (+ 4 — 1 = 3 valence) a valence jejich pozitivní nepřekročuje hranici iontu RX$_4$ a také nereagují ty prvky snad jako + pětiočné. Totéž platí o jiných komplexních (a jak se zdá, i tautomerních) kyselinách i jejich solech: H$_2$SiF$_6$ — fluorokřemíčité a H$_2$PtCl$_6$ — chloroplatíčité, v nichž algebraická suma valenci obou prvků Si i Pt jest + 4 a nemáže být vyšší, nežli v neutrálních částech těchto kyselin: SiF$_4$ a PtCl$_4$.

Další důsledkem těchto názorů jest pokus vyvíjení dosud nevyvíjeného problému, jaké valence udržují pohromadě dva atomy téhož prvku v poly-
měřených molekulách, kterým jsem se zabýval od roku 1877 s částečným úspěchem, dokázav tř. 1881, že v AlCl₃ není hliník čtyřmocný, nýbrž trojmocný.

Málo-li se, jako elektronové teorie valence, dva prvky spolu sloučit, což je zásadně analýzovat čárkou —, takže jednici přítomnost nebo valenční spoj
(kr. valency bond) (mluvněm zde jen o formálních sloučení anorganických) představujeme si proces ten tak, že při sloučení na př. H s Cl opustí jeden elektron atomu vodíkové a přejde na atom chloru. Poslední jádro atomu vodíkového pak přitaňuje čten elektron, který přešel na atom chloru a mezi oběma vzájemně silově vlivovou růru Faradayova. To naznačujeme šipkou v H → Cl, místo H+ → Cl. Sloučují nebo přitaňují-li se k sobě dva různé atomy, musí jeden z nich mít pozitivní polaritu a druhý negativní. Přitaňují-li se ale dva stejnojmeně atomy, na př. kovové, jako v polymerových nebo juzových chloridech, nebo na př. ClH₄ = HgCl nebo CuCl + CuCl₂ a má-li se to dít již možný způsobem, to jest aby při tom byla jejich polariit opačná, neboť dva pozitivní atomy by se vzájemně odpozorovali, nemůže se to dít dle schématu Cu → + Cu + Cu → Cl, neboť pak by byla algebraická suma valencí levého atolu měla 1 + 1 = 2 a pravého + 1 → 0, což je absurdní.

Přijmeme-li ale měj návrh vysvětlovací, že → Hg, nebo Cu v levé přitaňuje → Hg nebo Cu v pravo a působí-li místo těchto obou známének nad sebou, šipky, obdržíme následující formule: ClH₄ = HgCl, ClCu → CuCl₂ a algebraická suma valencí i Hg i Cu zůstává rovna + 1 v souhlase s jejich reakcemi jakožto prvků jednomocných. Jiné příklady jsou Cl₂Be = BeCl₂ (Be = + 2 moc.) Cl₂Sn = SnCl₂ (Sn = + 2 moc.) Cl₃Al = AlCl₃ (Al = + 3 moc.) Cl₃Fe = FeCl₃ (Fe = + 3 moc.) a pod. Totéž platí ale i o jiném druhu asociovácích sloučení, jako O₅N = NO₅, H₂O = OH₂, H₂N = NH₂ a O₃As₂ (čtyři šipky) As₂O₅. Zde se jeví úplná analogie molekulu vody i amoniaku, které se mohou na př. ve sloučeních, tvořících přechod od CuSO₄ 5 H₂O (krystalové voda) ke CuSO₄ 5 NH₃ (krystalový amoniak) dle Mendělejeva vzájemně substituovat.

Jelikož dle dnešních názorů součásti, obsažené v molekule, musí být udržovány dolhorní přitažlivosti elektrickou, bude snad jednou možno učinit si jasnější představu o konstrukci látek, obsahujících krystalovou vodu i o komplexních sloučeních amonákových, jakož i o četných t. zv. sloučeních »molekulárních« a sice, na rozdíl od Wernerovy, na základech čisté valencí. Názor, že se tak děje oněm dvěma + valencemi kyslíku vodě, nevyužívá ještě, kde a jak se připojí, ale nenastalo by tím ani zvýšení valence amionu, ani kationtu.

S jakými překážkami se někdy setkávám, když mě dovolili proděsit své názory, ochytněd od dosavadních, dosvědčuje tento příklad.

Ve zvláštní schůzce České Akademie, věnované diskusi o novém (opracovném) názvosloví vystudoval a hálil jsem některé z názorů výše uvedených. Byly však velmi nepříznivé odnášeny. Jako jeden argument bylo namittjito: »To není ani Werner!« Na to jsem odpověděl, že jsem nalezel silnou oporu těchto svých názorů v publikacích Američanů Nelsona a Falka.

Na jinou námitku, že by se časem mohli změnit teoreticky základ mých názorov, odpovídal: Jest vlastnosti živé vědy, že se její teorie zdekonstruují a tím i měnit. O slavné teorie Arrheniové vím dnes, že jest to užitečné schema k výkladu nebo znázornění toho, co se děje v roztocech. Se stanoviskem analytické chemie nemí posledním slovem, platí jen pro zdečené roztočky «skabších» elektrolytů, neboť většinou silných — silných — elektrolytů jest zřejmě zákaz Ostwaldovů s výkladem nebo znázorněním Gilbberg-Wagovým. A přece se budeme názorů Arrheniových přidržovat i při vyučování, dokud nebudou nahrazeny něčím lepším. Ostatně kdo se chce o tom přesvědčit, jak málo jsou založeny skvělé výsledky moderního fyzikálně-chemického šlechtění (např. struktura hmoty z atomů, nalezená X-papírky, struktura atomů i jich vzájemně přeměna radioaktivní a vše.
co s tím souvisí v moderní fysice, velkolepé výsledky analyse pozitivními paprsky) na fundament, který dala vědě slavná kdysi škola Ostwaldova, nechť si jen prohlédne knihu: Recent Advances in Physical and Inorganic Chemistry, již sepsal A. W. Stewart (3. vydání, Londýn 1919).

Ze všeho, co jsem zde uvedl jenžko výsledek své dlouholeté theoretické práce o valenci a jejím poměru k periodické soustavě, ovšem jen ve stručných rysích (až se zase budou moci u nás tisknuti obšírnější vědecká pojednání, sdešem tyto své názvy obšírněji i objasnit jejich souvislost s moderními názory o strukturě atomů), seznám každý nepředpojatý český chemik, že jsem měl vážné příčiny, když jsem si přál, aby se dosavadní staré názvosloví v době tehdejší jakožto předčasně, neopouštělo a že jsem se přišel, aby opravené názvosloví mohlo být založeno na moderním vědeckém základě, což ovšem vyžadovalo delšího času. Takové názvosloví jsem hotov přihodil uhm, zůstane ale odpůrcem názvosloví, založeného na ohydech nebo sloučeninách i na procesech, mnohdy ani neexistujících, anebo, což je jeně horší, na povrchně i chybě pojeté nauce valenční!

Ještě několik slov o nomenklaturě ionů.

U kationů užíváme přirozeně těhož adjektiva, kterýmž označujeme valenci prvku pozitivního ve složenině. Tak máme Fe++, ion, nebo lópe, kation železnatý, Al+++ kation hlinité atd.

U anionů dovoluji si navrhnuti, aby se všechn označovaly adjektivem odvozeným od substantiva, jež značí buď příslušnou kyselinu nebo její slit.

a) Názvy od kyseliny odvozeného budí užíváno v těch pádech, kdy valenci koncovka udává valenci hlavního prvku pozitivního ve složitěm nebo komplexním aniontu: ClO4-, anion chlorový, NO3-, anion dusitý, CO32-, anion uhličitý, ClO2-, anion chloréčný, SO42-, anion sírový, MnO4-, anion mangasýný atd.

b) U anionů kyselín, nesoucí stará jména, na nich se české názvoslovné koncovky nevztahují, jako HF, HCl, HBr, HI, HCN, H2FeCy, H2FeCy, HCNS (nebo HSCN) a H2S, bylo by proti duchu českého jazyka, kdyby se vyjadřovaly dvěma substantivy jako ion chlořu nebo anion chlořu, kyanu, síry. Také nedoporučuji, by se užívala názvy adjektivních jako pro Cl- anion chlorový, pro S- anion sírový, nebo S- a pod., jelikož tyto koncovky naznačují určitou valenci složitých ionů (sírový SO42-), což by vedlo jenom ke zmatkům. Naproti tomu navrhnuji, aby, dle vzoru anglického anionty těchto kyselin nebo solí, poněvadž to jsou všecky —idy buď odykum nebo kov, se nazývaly: CI- anion chloridový atd., CN- kyanidový, (FeCy)3+- ferrokyanidový, (FeCy)2- ferrikyanidový, S- sírnikový, S8- polysulfidový atd. Jen tak si uvedežimme rozdíl mezi kationem hlinitým: Al+++ a aniontem hlinitanovým, dosud AlO2H2+ ale dle praci dra Heyrovského [Al111 (OH)3].

Jak vidíte, zasloužuje naše názvosloví zralého uvažení i po stránce jazykové.

Již roku 1881 napsal jsem, že budoucnost chemie (anorganické) i periodické soustavy závisí na studiu vzácnějších prvků, jímž se na našich vysokých školách dosud jen málo pozornosti věnuje. Proto jsem také sám sebe svými pokročilými záky pracoval silně na chemii vzácných prvků.

Dnešní chemie rozoznažá 86 pozemských prvků nebo druh prvků, ale nepatrná doba, která je na naší universitě vyhrazena kvalitativní analýze, nedovoluje, aby se pozornost věnovala více nežli nejboháčejsím 34 prvkům, tedy daleko méně, nežli polovicí všech. Stěžně lituji, že nemohu být pojet do knížky krásně, elegantní a instrukční „plamenné reakce“, jímž jsem se u největšího analytika Bunsena naučil, jakco i četně jiné mikrochemické reakce.

Tém, kdeři se hodlají vzdělati dale v kvalitativní chemické analýze, skutečně moderní, doporučuji v první řadě: The Elements of Qualitative Chemical Analysis.